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Abstract

Recent advances in deep learning have shown impressive results in the domain of text-
to-speech. To this end, a deep neural network is usually trained using a corpus of
several hours of professionally recorded speech from a single speaker. Giving a new
voice to such a model is highly expensive, as it requires recording a new dataset and
retraining the model. A recent research introduced a three-stage pipeline that allows
to clone a voice unseen during training from only a few seconds of reference speech, and
without retraining the model. The authors share remarkably natural-sounding results,
but provide no implementation. We reproduce this framework and open-source the
first public implementation of it. We adapt the framework with a newer vocoder
model, so as to make it run in real-time.
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1 Introduction

Deep learning models have become predominant in many fields of applied machine
learning. Text-to-speech (TTS), the process of synthesizing artificial speech from a
text prompt, is no exception. Deep models that would produce more natural-sounding
speech than the traditional concatenative approaches begun appearing in 2016. Much
of the research focus has been since gathered around making these deep models more
efficient, sound more natural, or training them in an end-to-end fashion. Inference
has come from being hundreds of times slower than real-time on GPU (van den Oord
et al., 2016) to possible in real-time on a mobile CPU (Kalchbrenner et al., 2018). As
for the quality of the generated speech, Shen et al. (2017) demonstrate near-human
naturalness. Interestingly, speech naturalness is best rated with subjective metrics;
and comparison with actual human speech leads to the conclusion that there might
be such a thing as ”speech more natural than human speech”. In fact, some argue
that the human naturalness threshold has already been crossed (Shirali-Shahreza and
Penn, 2018).

Datasets of professionally recorded speech are a scarce resource. Synthesizing
a natural voice with a correct pronunciation, lively intonation and a minimum of
background noise requires training data with the same qualities. Furthermore, data
efficiency remains a core issue of deep learning. Training a common text-to-speech
model such as Tacotron (Wang et al., 2017) typically requires hundreds of hours of
speech. Yet the ability to generate speech with any voice is attractive for a range
of applications, be they useful or merely a matter of customization. Research has
led to frameworks for voice conversion and voice cloning. They differ in that voice
conversion is a form of style transfer on a speech segment from a voice to another,
whereas voice cloning consists in capturing the voice of a speaker to perform text-to-
speech on arbitrary inputs.

While the complete training of a single-speaker TTS model is technically a form
of voice cloning, the interest rather lies in creating a fixed model able to incorporate
newer voices with little data. The common approach is to condition a TTS model
trained to generalize to new speakers on an embedding of the voice to clone (Arik
et al., 2017, 2018; Jia et al., 2018). The embedding is low-dimensional and derived
by a speaker encoder model that takes reference speech as input. This approach is
typically more data efficient than training a separate TTS model for each speaker,
in addition to being orders of magnitude faster and less computationally expensive.
Interestingly, there is a large discrepancy between the duration of reference speech
needed to clone a voice among the different methods, ranging from half an hour per
speaker to only a few seconds. This factor is usually determining of the similarity of
the generated voice with respect to the true voice of the speaker.

Our objective is to achieve a powerful form of voice cloning. The resulting
framework must be able to operate in a zero-shot setting, that is, for speakers unseen
during training. It should incorporate a speaker’s voice with only a few seconds of
reference speech. These desired results are shown to be fulfilled by (Jia et al., 2018).

4



Their results are impressive1, but not backed by any public implementation. We
reproduce their framework and make our implementation open-source2. In addition,
we integrate a model based on (Kalchbrenner et al., 2018) in the framework to make
it run in real-time, i.e. to generate speech in a time shorter or equal to the duration
of the produced speech.

The structure of this document goes as follows. We begin with a short intro-
duction on methods of TTS with machine learning. Follows a review of the evolution
of the state of the art for TTS with speech naturalness as the core metric. We then
present the work of (Jia et al., 2018) along with our own implementation. We conclude
with a presentation of a toolbox we designed to interface the framework.

2 A review of text-to-speech methods in machine

learning

2.1 Statistical parametric speech synthesis

Statistical parametric speech synthesis (SPSS) refers to a group of data-driven TTS
methods that emerged in the late 90s. In SPSS, the relationship between the features
computed on the input text and the output acoustic features is learned by a statistical
generative model (called the acoustic model). A complete SPSS framework thus also
includes a pipeline to extract features from the text to synthesize, as well as a system
able to reconstruct an audio waveform from the acoustic features produced by the
acoustic model (such a system is called a vocoder). Unlike the acoustic model, these
two parts of the framework may be entirely engineered and make use of no statistical
methods. While modern deep TTS models are usually not referred to as SPSS, the
SPSS pipeline as depicted in Figure 1 applies just as well to those newer methods.

Figure 1: The general SPSS pipeline. The blue box is purely a statistical model while
the green boxes can be engineered processes or/and statistical models.

The role of the feature extractor is to provide data that is more indicative of
what the speech produced by the model is expected to sound like. Speech is a complex
process, and directly feeding characters to a weak acoustic model will prove not to
be effective. Providing additional features from natural language processing (NLP)
techniques may greatly reduce the extent of the task to be learned by the acoustic
model. It may however result in trade-offs when it comes to naturalness, especially

1https://google.github.io/tacotron/publications/speaker_adaptation/index.html
2https://github.com/CorentinJ/Real-Time-Voice-Cloning
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for rare or unknown words. Indeed, manually engineered heuristics do not quite fully
characterize all intricacies of spoken language. For this reason, feature extraction
can also be done with trained models. The line between the feature extractor and
the acoustic model can then become blurry, especially for deep models. In fact, a
tendency that is common across all areas where deep models have overtaken traditional
machine learning techniques is for feature extraction to consist of less heuristics, as
highly nonlinear models become able to operate at higher levels of abstraction.

A common feature extraction technique is to build frames that will integrate
surrounding context in a hierarchical fashion. For example, a frame at the syllable level
could include the word that comprises it, its position in the word, the neighbouring
syllables, the phonemes that make up the syllable, ... The lexical stress and accent
of individual syllables can be predicted by a statistical model such as a decision tree.
To encode prosody, a set of rules such as ToBI (Beckman and Elam, 1997) can be
used. Ultimately, there remains a work of feature engineering to present a frame as a
numerical object to the model, e.g. categorical features are typically encoded using a
one-hot representation.

The reason why the acoustic model does not directly predict an audio waveform
is that audio happens to be difficult to model: it is a particularly dense domain
and audio signals are typically highly nonlinear. A representation that brings out
features in a more tractable manner is the time-frequency domain. Spectrograms
are smoother and much less dense than their waveform counterpart. They also have
the benefit of being two-dimensional, thus allowing models to better leverage spatial
connectivity. Unfortunately, a spectrogram is a lossy representation of the waveform
that discards the phase. There is no unique inverse transformation function, and
deriving one that produces natural-sounding results is not trivial. When referring to
speech, this generative function is called a vocoder. The choice of the vocoder is an
important factor in determining the quality of the generated audio.

As is often the case with tasks that involve generating perceptual data such as
images or audio, a formal and objective evaluation of the performance of the model
is difficult. In our case, we’re concerned with evaluating speech naturalness and voice
similarity of the generated audio. Older TTS methods often relied on statistics com-
puted on the waveform or on the acoustic features to compare different models. Not
only are those metrics often only weakly correlated with the human perception of
sound, but they would also typically be what the model was aiming to minimize.
“When a measure becomes a target, it ceases to be a good measure” (Strathern, 1997).
A recent tendency adopted in TTS is to perform a subjective evaluation with human
subjects and to report their Mean Opinion Score (MOS). The subjects are presented
with a series of audio segments and are asked to rate their naturalness (or similarity
when comparing two segments) on a Likert scale from 1 to 5. Because subjects do not
necessarily rate actual human speech with a 5, it may be possible for TTS systems to
surpass humans on this metric in the future. (Shirali-Shahreza and Penn, 2018) argue
that MOS is not a metric adapted to evaluate TTS systems, and they advocate using
A/B testing instead, where subjects are asked to say which audio segment they prefer
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among two (a neutral vote is usually also possible). To account for the variance of
opinion within subjects, one should aim to perform these studies at a large scale, with
hundreds of subjects. Crowdsourcing services such as Amazon Mechanical Turk3 are
commonly involved.

2.2 Evolution of the state of the art in text-to-speech

The state of the art in SPSS has for long remained a hidden Markov model (HMM)
based framework (Tokuda, 2013). This approach, laid out in Figure 2, consists in
clustering the linguistic features extracted from the input text with a decision tree, and
to train a HMM per cluster (Yoshimura et al., 1999). The HMMs are tasked to produce
a distribution over spectrogram coefficients, their derivative, second derivative and a
binary flag that indicates which parts of the generated audio should contain voice.
With the maximum likelihood parameter generation algorithm (MLPG) (Tokuda et al.,
2000), spectrogram coefficients are sampled from this distribution and eventually fed
to the MLSA vocoder (Imai, 1983). It is possible to modify the voice generated by
conditioning the HMMs on a speaker or tuning the generated speech parameters with
adaptation or interpolation techniques (Yoshimura et al., 1997). Note that, while this
framework used to be state of the art for SPSS, it was still inferior in terms of the
naturalness of the generated speech compared to the well-established concatenative
approaches.

Figure 2: The general HMM-based
TTS pipeline. Figure extracted from
(Hashimoto et al., 2015).

Method MOS
HMM+MLPG 3.08 (±0.12)
HMM+DNN 2.86 (±0.12)
DNN+MLPG 3.53 (±0.12)
DNN+DNN 3.17 (±0.12)

Table 1: MOS of the different methods
explored in (Hashimoto et al., 2015).
The first line is the HMM-based frame-
work. For the second and fourth line,
the MLPG algorithm is replaced by a
fully-connected neural network.

Improvements to this framework were later brought by feed-forward deep neural
networks (DNN), as a result of progress in both hardware and software. Zen et al.
(2013) proposes to replace entirely the decision tree-clustered HMMs in favor of a DNN.
They argue for better data efficiency as the training set is no longer fragmented in
different clusters of contexts. They demonstrate improvements over the speech quality

3https://www.mturk.com/
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with a number of parameters similar to that of the HMM-based approach. Later
researches corroborate these findings (Qian et al., 2014; Hashimoto et al., 2015). The
MOS of different model combinations tried by (Hashimoto et al., 2015) are reported
in Table 1

(Fan et al., 2014) support that RNNs make natural acoustic models as they
are able to learn a compact representation of complex and long-span functions. As
RNNs are fit to generate temporally consistent series, the static features can directly
be determined by the acoustic model, alleviating the need for dynamic features and
MLPG. They compare networks of bidirectional LSTMs against the HMM and DNN
based approaches described previously. Their A/B testing results are conclusive, we
report them in Figure 3.

Figure 3: A/B testing of the models. Hybrid B is a network with fully-connected and
bidirectional LSTM layers. Figure extracted from (Fan et al., 2014).

The coming of WaveNet (van den Oord et al., 2016) made a substantial break-
through in TTS. WaveNet is a deep convolutional neural network that, for a raw audio
waveform, models the distribution of a single sample conditionally to previous ones.
It is thus possible to directly generate audio by predicting samples one at a time in an
autoregressive fashion. WaveNet leverages stacks of one-dimensional dilated convolu-
tions with a dilation factor increasing exponentially with the layer depth, allowing for
the very large receptive field and the strong nonlinearity needed to model raw audio.
Conditioning the model on linguistic features is required to perform TTS. WaveNet
acts thus both as an acoustic model and as a vocoder. Note that without the local
conditioning, a trained WaveNet generates sound alike the training data but without
structure or semantics (essentially babbling). The authors compare WaveNet to an
older parametric approach and to a concatenative approach, the results are reported
in Figure 4. The parametric approach is an LSTM-based system while the other is
an HMM-driven unit selection concatenative system (not detailed in this document).
Notice how the results vary between US English and Mandarin Chinese, showing that
TTS performance is not language agnostic.

Follows Tacotron (Wang et al., 2017), a sequence-to-sequence model that pro-
duces a spectrogram from a sequence of characters alone, further reducing the need
for domain expertise. In this framework, the vocoder is the Griffin-Lim algorithm.
Tacotron uses an encoder-decoder architecture where, at each step, the decoder oper-
ates on a weighted sum of the encoder outputs. This attention mechanism, described
in (Bahdanau et al., 2014), lets the network decide which steps of the input sequence
are important with respect to each step of the output sequence. Tacotron achieves

4Figure extracted from https://deepmind.com/blog/wavenet-generative-model-raw-audio/.
Audio samples are available at the same URL.
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Figure 4: MOS of WaveNet’s performance compared with a parametric and concate-
native approach, as well as with natural speech.4

a MOS of 3.85 on a US English dataset, which is more than the 3.69 score obtained
in the parametric approach of (Zen et al., 2016) but less than the 4.09 score ob-
tained by the concatenative approach of (Gonzalvo et al., 2016). The authors mention
that Tacotron is merely a step towards a better framework. Subsequently, Tacotron
2 is published (Shen et al., 2017). The architecture of Tacotron 2 remains that of
an encoder-decoder with attention although several changes to the type of layers are
made. The main difference with Tacotron is the use of a modified WaveNet as vocoder.
On the same dataset, Tacotron 2 achieves a MOS of 4.53, which compares to the 4.58
for human speech (the difference is not statistically significant), achieving the all-time
highest MOS for TTS. With A/B testing, Tacotron 2 was found to be only slightly less
preferred on average than ground truth samples. These ratings are shown in Figure 5.

Figure 5: Preference ratings between Tacotron 2 and ground truth samples. There
are 800 ratings from 100 items. The labels are expressed with respect to Tacotron 2.
Figure extracted from (Shen et al., 2017).

For a global comparison of the techniques described in this section, we report in
Figure 6 all the MOS of each state of the art method. Note that we have more than one
result for human speech, as at least two studies evaluate it independently. The MOS
for human speech is consistent across both, and the difference between them is not
statistically significant. However note that the two studies have authors in common,
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and thus might share a bias. Slightly different evaluation methods of the MOS may
yield different results, which is one of the reasons why MOS is subject to criticism.

Figure 6: MOS for the methods presented in this section.

3 Transfer Learning from Speaker Verification to

Multispeaker Text-To-Speech Synthesis

3.1 Overview

Our approach to real-time voice cloning is largely based on (Jia et al., 2018) (referred
to as SV2TTS throughout this document). It describes a framework for zero-shot voice
cloning that only requires 5 seconds of reference speech. This paper is only one of the
many publications from the Tacotron series5 authored at Google. Interestingly, the
SV2TTS paper does not bring much innovation of its own, rather it is based on three
major earlier works from Google: the GE2E loss (Wan et al., 2017), Tacotron (Wang
et al., 2017) and WaveNet (van den Oord et al., 2016). The complete framework
is a three-stage pipeline, where the steps correspond to the models listed in order
previously. Many of the current TTS tools and functionalities provided by Google,
such as the Google assistant6 or the Google cloud services7, make use of these same
models. While there are many open-source reimplementations of these models online,
there is none of the SV2TTS framework to our knowledge (as of May 2019).

The three stages of the framework are as follows:

5https://google.github.io/tacotron/
6https://assistant.google.com/
7https://cloud.google.com/text-to-speech/
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• A speaker encoder that derives an embedding from the short utterance of a
single speaker. The embedding is a meaningful representation of the voice of
the speaker, such that similar voices are close in latent space. This model is
described in (Wan et al., 2017) (referred as GE2E throughout this document)
and (Heigold et al., 2015).

• A synthesizer that, conditioned on the embedding of a speaker, generates a
spectrogram from text. This model is the popular Tacotron 2 (Shen et al., 2017)
without WaveNet (which is often referred to as just Tacotron due to its similarity
to the first iteration).

• A vocoder that infers an audio waveform from the spectrograms generated by
the synthesizer. The authors used WaveNet (van den Oord et al., 2016) as a
vocoder, effectively reapplying the entire Tacotron 2 framework.

At inference time, the speaker encoder is fed a short reference utterance of the speaker
to clone. It generates an embedding that is used to condition the synthesizer, and
a text processed as a phoneme sequence is given as input to the synthesizer. The
vocoder takes the output of the synthesizer to generate the speech waveform. This is
illustrated in Figure 7.

Figure 7: The SV2TTS framework during inference. The blue blocks represent a
high-level view of the Tacotron architecture modified to allow conditioning on a voice.
Figure extracted from (Jia et al., 2018).

A particularity of the SV2TTS framework is that all models can be trained
separately and on distinct datasets. For the encoder, one seeks to have a model
that is robust to noise and able to capture the many characteristics of the human
voice. Therefore, a large corpus of many different speakers would be preferable to
train the encoder, without any strong requirement on the noise level of the audios.
Additionally, the encoder is trained with the GE2E loss which requires no labels other
than the speaker identity. With GE2E, the task to be learned by the model is a
speaker verification task, which by itself has little to do with voice cloning. However,
the task is stipulated in way that the network will output an embedding that is a
meaningful representation of the voice of the speaker. This embedding is suitable
for conditioning the synthesizer on a voice, hence the name of the paper: “Transfer
Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis”. For
the datasets of the synthesizer and the vocoder, transcripts are required and the quality
of the generated audio can only be as good as that of the data. Higher quality and
annotated datasets are thus required, which often means they are smaller in size.
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In the following subsection, we formally define the task that SV2TTS aims to
solve. In the remaining subsections, we present the three parts of the framework
as described in (Jia et al., 2018), our implementation of each and the result of our
experiments.

3.2 Problem definition

Consider a dataset of utterances grouped by their speaker. We denote the jth utterance
of the ith speaker as uij. Utterances are in the waveform domain. We denote by xij

the log-mel spectrogram of the utterance uij. A log-mel spectrogram is a deterministic,
non-invertible (lossy) function that extracts speech features from a waveform, so as to
handle speech in a more tractable fashion in machine learning.

The encoder E computes the embedding eij = E(xij; wE) corresponding to the
utterance uij, where wE are the parameters of the encoder. Additionally, the au-
thors define a speaker embedding as the centroid of the embeddings of the speaker’s
utterances:

ci =
1

n

n∑
j=1

eij (1)

The synthesizer S, parametrized by wS , is tasked to approximate xij given
ci and tij, the transcript of utterance uij. We have x̂ij = S(ci, tij; wS). In our
implementation, we directly use the utterance embedding rather than the speaker
embedding (we motivate this choice in section 3.4), giving instead x̂ij = S(uij, tij; wS).

Finally, the vocoder V , parametrized by wV , is tasked to approximate uij given
x̂ij. We have ûij = V(x̂ij; wV).

One could train this framework in an end-to-end fashion with the following
objective function:

minwE ,wS ,wVLV(uij,V(S(E(xij; wE), tij; wS); wV))

Where LV is a loss function in the waveform domain. This approach has drawbacks:

• It requires training all three models on a same dataset, meaning that this dataset
would ideally need to meet the requirements for all models: a large number of
speakers for the encoder but at the same time, transcripts for the synthesizer.
A low level noise for the synthesizer and somehow an average noise level for
the encoder (so as to be able to handle noisy input speech). These conflicts
are problematic and would lead to training models that could perform better if
trained separately on distinct datasets. Specifically, a small dataset will likely
lead to poor generalization and thus poor zero-shot performance.

• The convergence of the combined model could be very hard to reach. In par-
ticular, the Tacotron synthesizer could take a significant time before producing
correct alignments.
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An evident way of addressing the second issue is to separate the training of the
synthesizer and of the vocoder. Assuming a pretrained encoder, the synthesizer can
be trained to directly predict the mel spectrograms of the target audio:

minwSLS(xij,S(eij, tij; wS))

Where LS is a loss function in the time-frequency domain.

The vocoder is then trained directly on the spectrograms. Note that both the
approaches of training on ground truth spectrograms or on synthesizer-generated spec-
trograms are valid. The latter requires a pretrained synthesizer.

minwVLV(uij,V(xij; wV)) or minwVLV(uij,V(x̂ij; wV))

Remains the optimization of the speaker encoder. Unlike the synthesizer and the
vocoder, the encoder does not have labels to be trained on. The task is lousily defined
as producing “meaningful” embeddings that characterize the voice in the utterance.
One could conceive of a way to train the speaker encoder as an autoencoder, but
it would require the corresponding upsampling model to be made aware of the text
to predict. Either the dataset is constrained to a same sentence, either one needs
transcripts and the upsampling model is the synthesizer. In both cases the quality of
the training is impaired by the dataset and unlikely to generalize well. Fortunately,
the GE2E loss (Wan et al., 2017) brings a solution to this problem and allows to train
the speaker encoder independently of the synthesizer. This is described in section 3.3.

Figure 8: The sequential three-stage training of SV2TTS (following our choices of
implementation). Models with solid contour lines are frozen. Note that the mel
spectrograms fed to the speaker encoder and those used as target for the synthesizer
are created with different parameters.
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While all parts of the framework are trained separately, there is still the re-
quirement for the synthesizer to have embeddings from a trained encoder and for the
vocoder to have mel spectrograms from a trained synthesizer (if not training on ground
truth spectrogram). Figure 8 illustrates how each model depends on the previous one
for training. The speaker encoder needs to generalize well enough to produce meaning-
ful embeddings on the dataset of the synthesizer; and even when trained on a common
dataset, it still has to be able to operate in a zero-shot setting at inference time.

3.3 Speaker encoder

The encoder model and its training procedure are described over several papers (Jia
et al., 2018; Wan et al., 2017; Heigold et al., 2015). We reproduced this model with
a PyTorch implementation of our own. We synthesize the parts that are pertinent to
SV2TTS as well as our choices of implementation.

3.3.1 Model architecture

The model is a 3-layer LSTM with 768 hidden nodes followed by a projection layer of
256 units. While there is no reference in any of the papers as to what a projection layer
is, our intuition is that it is simply a 256 outputs fully-connected layer per LSTM that
is repeatedly applied to every output of the LSTM. When we first implemented the
speaker encoder, we directly used 256 units LSTM layers instead, for the sake of quick
prototyping, simplicity and for a lighter training load. This last part is important, as
the authors have trained their own model for 50 million steps (although on a larger
dataset), which is technically difficult for us to reproduce. We found this smaller model
to perform extremely well, and we haven’t found the time to train the larger version
later on.

The inputs to the model are 40-channels log-mel spectrograms with a 25ms
window width and a 10ms step. The output is the L2-normalized hidden state of the
last layer, which is a vector of 256 elements. Our implementation also features a ReLU
layer before the normalization, with the goal in mind to make embeddings sparse and
thus more easily interpretable.

3.3.2 Generalized End-to-End loss

The speaker encoder is trained on a speaker verification task. Speaker verification is a
typical application of biometrics where the identity of a person is verified through their
voice. A template is created for a person by deriving their speaker embedding (see
equation 1) from a few utterances. This process is called enrollment. At runtime, a
user identifies himself with a short utterance and the system compares the embedding
of that utterance with the enrolled speaker embeddings. Above a given similarity
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threshold, the user is identified. The GE2E loss simulates this process to optimize the
model.

At training time, the model computes the embeddings eij (1 ≤ i ≤ N, 1 ≤ j ≤
M) of M utterances of fixed duration from N speakers. A speaker embedding ci is
derived for each speaker: ci = 1

M

∑M
j=1 eij. The similarity matrix Sij,k is the result

of the two-by-two comparison of all embeddings eij against every speaker embedding
ck (1 ≤ k ≤ N) in the batch. This measure is the scaled cosine similarity:

Sij,k = w · cos(eij, ck) + b = w · eij · ||ck||2 + b (2)

where w and b are learnable parameters. This entire process is illustrated in
Figure 9. From a computing perspective, the cosine similarity of two L2-normed
vectors is simply their dot product, hence the rightmost hand side of equation 2. An
optimal model is expected to output high similarity values when an utterance matches
the speaker (i = k) and lower values elsewhere (i 6= k). To optimize in this direction,
the loss is the sum of row-wise softmax losses.

Figure 9: The construction of the similarity matrix at training time. This figure is
extracted from (Wan et al., 2017).

Note that each utterance eij is included in the centroid ci of the same speaker
when computing the loss. This creates a bias towards the correct speaker indepen-
dently of the accuracy of the model; and the authors argue that it also leaves room
for trivial solutions. To prevent this, an utterance that is compared against its own
speaker’s embedding will be removed from the speaker embedding. The similarity
matrix is then defined as:

Sji,k =

{
w · cos(eij, c

(−j)
i ) + b if i = k

w · cos(eij, ck) + b otherwise.
(3)

where the exclusive centroids c
(−j)
i are defined as:

c
(−j)
i =

1

M − 1

M∑
m=1
m 6=j

eim (4)

15



The fixed duration of the utterances in a training batch is of 1.6 seconds. These
are partial utterances sampled from the longer complete utterances in the dataset.
While the model architecture is able to handle inputs of variable length, it is reasonable
to expect that it performs best with utterances of the same duration as those seen in
training. Therefore, at inference time an utterance is split in segments of 1.6 seconds
overlapping by 50%, and the encoder forwards each segment individually. The resulting
outputs are averaged then normalized to produce the utterance embedding. This
is illustrated in Figure 10. Curiously, the authors of SV2TTS advocate for 800ms
windows at inference time but still 1.6 seconds ones during training. We prefer to
keep 1.6 seconds for both, as is done in GE2E.

Figure 10: Computing the embedding of a complete utterance. The d-vectors are
simply the unnormalized outputs of the model. This figure is extracted from (Wan
et al., 2017).

The authors use N = 64 and M = 10 as parameters for the batch size. When
enrolling a speaker in a practical application, one should expect to have several utter-
ances from each user but likely not an order of magnitude above that of 10, so this
choice is reasonable. As for the number of speakers, it is good to observe that the time
complexity of computing the similarity matrix is O(N2M). Therefore this parameter
should be chosen not too large so as to not slow down substantially the training, as
opposed to simply picking the largest batch size that fits on the GPU. It is still of
course possible to parallelize multiple batches on the same GPU while synchronizing
the operations across batches for efficiency. We found it particularly important to
vectorize all operations when computing the similarity matrix, so as to minimize the
number of GPU transactions.

3.3.3 Experiments

To avoid segments that are mostly silent when sampling partial utterances from com-
plete utterances, we use the webrtcvad8 python package to perform Voice Activity

8https://github.com/wiseman/py-webrtcvad
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Detection (VAD). This yields a binary flag over the audio corresponding to whether or
not the segment is voiced. We perform a moving average on this binary flag to smooth
out short spikes in the detection, which we then binarize again. Finally, we perform
a dilation on the flag with a kernel size of s + 1, where s is the maximum silence
duration tolerated. The audio is then trimmed of the unvoiced parts. We found the
value s = 0.2s to be a good choice that retains a natural speech prosody. This process
is illustrated in Figure 11. A last preprocessing step applied to the audio waveforms
is normalization, to make up for the varying volume of the speakers in the dataset.

Figure 11: The steps to silence removal with VAD, from top to bottom. The orange
line is the binary voice flag where the upper value means that the segment is voiced,
and unvoiced when lower.

The authors combined several noisy datasets to make for a large corpus of speech
of quality similar to what is found in the wild. These datasets are LibriSpeech (Panay-
otov et al., 2015), VoxCeleb1 (Nagrani et al., 2017), VoxCeleb2 (Chung et al., 2018)
and an internal dataset, to which we do not have access. LibriSpeech is a corpus of
audiobooks making up for 1000 hours of audio from 2400 speakers, split equally in two
sets “clean” and “other”. The clean set is supposedly made up of cleaner speech than
the other set, even though some parts of the clean set still contain a lot of noise (Zen
et al., 2019). VoxCeleb1 and VoxCeleb2 are made up from audio segments extracted
from youtube videos of celebrities (often in the context of an interview). VoxCeleb1
has 1.2k speakers, while VoxCeleb2 has about 6k. Both these datasets have non-
English speakers. We used heuristics based on the nationality of the speaker to filter
non-English ones out of the training set in VoxCeleb1, but couldn’t apply those same
heuristics to VoxCeleb2 as the nationality is not referenced in that set. Note that it
is unclear without experimentation as to whether having non-English speakers hurts
the training of the encoder (the authors make no note of it either). All these datasets
are sampled at 16kHz.

The authors test different combinations of these datasets and observe the effect
on the quality of the embeddings. They adjust the output size of LSTM model (the size
of the embeddings) to 64 or 256 according to the number of speakers. They evaluate
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the subjective naturalness and similarity with ground truth of the speech generated by
a synthesizer trained from the embeddings produced by each model. They also report
the equal error rate of the encoder on speaker verification, which we discuss later in
this section. These results can be found in Table 2.

Training Set Speakers Embedding Dim Naturalness Similarity SV-EER

LS-Clean 1.2K 64 3.73± 0.06 2.23± 0.08 16.60%
LS-Other 1.2K 64 3.60± 0.06 2.27± 0.09 15.32%

LS-Other+VC 2.4K 256 3.83± 0.06 2.43± 0.09 11.95%
• LS-Other+VC+VC2 8.4K 256 3.82± 0.06 2.54± 0.09 10.14%

Internal 18K 256 4.12± 0.05 3.03± 0.09 5.08%

Table 2: Training of the speaker encoder on different datasets, from (Jia et al., 2018).
LS is LibriSpeech and VC is VoxCeleb. The synthesizers are trained on LS-Clean
and evaluated on a test set. The line with a bullet is the implementation we aim to
reproduce.

These results indicate that the number of speakers is strongly correlated with the
good performance of not only the encoder on the verification task, but also of the entire
framework on the quality of the speech generated and on its ability to clone a voice.
The small jump in naturalness, similarity and EER gained by including VoxCeleb2
could possibly indicate that the variation of languages is hurting the training. The
internal dataset of the authors is a proprietary voice search corpus from 18k English
speakers. The encoder trained on this dataset performs significantly better, however
we only have access to public datasets. We thus proceed with LibriSpeech-Other,
VoxCeleb1 and VoxCeleb2.

We train the speaker encoder for one million steps. To monitor the training we
report the EER and we observe the ability of the model to cluster speakers. We peri-
odically sample a batch of 10 speakers with 10 utterances each, compute the utterance
embeddings and projecting them in a two-dimensional space with UMAP (McInnes
and Healy, 2018). As embeddings of different speakers are expected to be further
apart in the latent space than embeddings from the same speakers, it is expected that
clusters of utterances from a same speaker form as the training progresses. We report
our UMAP projections in Figure 12, where this behaviour can be observed.

As mentioned before, the authors have trained their model for 50 million steps
on their proprietary dataset. While both our dataset and our model are smaller, our
model still hasn’t converged at 1 million steps. The loss decreases steadily with little
variance and could still decrease more, but we are bound by time.

The resulting model yields very strong results nonetheless. In fact, we computed
the test set EER to be 4.5%. This is an astonishingly low value in light of the 10.14%
of the authors for the same set with 50 times more steps. We do not know whether
our model is actually performing that well or if the EER computation procedure of
the authors is different enough than ours to produce values so far apart.
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Figure 12: UMAP projections of utterance embeddings from randomly selected batches
from the train set at different iterations of our model. Utterances from the same
speaker are represented by a dot of the same color. We specifically omit to pass labels
to UMAP, so the clustering is entirely done by the model.

We find the clustering in latent space produced by our model to be impressively
robust and to generalize well. In all our tests, the UMAP projections perfectly separate
utterances from the test set of each of the three datasets, with large inter-cluster
distances and small intra-cluster variance. An example is given in Figure 13. The
test set used for this evaluation is the combination of the test sets of LibriSpeech,
VoxCeleb1 and VoxCeleb2. Speakers annotated with an F are female speakers, those
with an M are male speakers. We compare our results with (Jia et al., 2018, Figure
3). We find that our projections also separate the gender of speakers linearly in the
projected space. In the author’s figure the utterances are from LibriSpeech only. We
include VoxCeleb1 and VoxCeleb2 as well, with some of the randomly selected speakers
who do not speak English. Note that our clusters are denser than those of the authors,
but that this is only a result of using a different dimension reduction technique. We
find results similar to theirs when using T-SNE (van der Maaten and Hinton, 2008).

The Equal Error Rate (EER) is a measure typically used in biometric systems
to evaluate the accuracy of the system. It is the value of the false positive rate when
it is equal to the true negative rate. Equating those terms is done by varying the
similarity threshold above which a user is recognized by the biometric system. The
authors of SV2TTS do not make mention of their procedure to evaluate the EER. This
is problematic as the EER is tricky to compute, and highly depends on the number of
enrollment utterances chosen. We refer to GE2E and use 6 utterances for enrollment
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Figure 13: UMAP projections of 120
embeddings, 10 for each of the 12 speak-
ers. Six male and six female speakers
are selected at random from the test
sets

Figure 14: Speaker verification EER on
the test set with respect to the number
of enrollment utterances. Each speaker
is tested against n + 1 utterances used
for enrollment.

and compare those to 7 utterances. For different numbers of utterances, refer to Figure
14. They authors do not mention either if the utterances they use (both for enrollment
and test) are complete or partial utterances. In light of our results, we uses partial
utterances; but complete utterances would yield an even lower EER.

Due to the lack of information provided by the authors of SV2TTS and as we
found no reliable source indicating how the EER is computed for such a system, we
cannot guarantee the correctness nor fairness of the comparison of our results against
those of the authors. Independently of them however, our tests certainly demonstrate
that our speaker encoder is performing very well on the task of speaker verification.
With that taken into account, we are confident that the speaker encoder is generating
meaningful embeddings.

On the topic of inference speed, the encoder is by far the fastest of the three
models as it operates at approximately 1000× real-time on our GTX 1080 GPU. In
fact, the execution time is bounded by the GPU I/O for all utterances of our dataset.

3.4 Synthesizer

The synthesizer is Tacotron 2 without Wavenet (van den Oord et al., 2016). We use an
open-source Tensorflow implementation9 of Tacotron 2 from which we strip Wavenet
and implement the modifications added by SV2TTS.

9https://github.com/Rayhane-mamah/Tacotron-2
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3.4.1 Model architecture

We briefly present the top-level architecture of the modified Tacotron 2 without
Wavenet (which we’ll refer to as simply Tacotron). For further details, we invite
the reader to take a look at the Tacotron papers (Shen et al., 2017; Wang et al., 2017).

Tacotron is a recurrent sequence-to-sequence model that predicts a mel spectro-
gram from text. It features an encoder-decoder structure (not to be mistaken with the
speaker encoder of SV2TTS) that is bridged by a location-sensitive attention mecha-
nism (Chorowski et al., 2015). Individual characters from the text sequence are first
embedded as vectors. Convolutional layers follow, so as to increase the span of a single
encoder frame. These frames are passed through a bidirectional LSTM to produce the
encoder output frames. This is where SV2TTS brings a modification to the archi-
tecture: a speaker embedding is concatenated to every frame that is output by the
Tacotron encoder. The attention mechanism attends to the encoder output frames to
generate the decoder input frames. Each decoder input frame is concatenated with
the previous decoder frame output passed through a pre-net, making the model au-
toregressive. This concatenated vector goes through two unidirectional LSTM layers
before being projected to a single mel spectrogram frame. Another projection of the
same vector to a scalar allows the network to predict on its own that it should stop
generating frames by emitting a value above a certain threshold. The entire sequence
of frames is passed through a residual post-net before it becomes the mel spectrogram.
This architecture is represented in Figure 15.

Figure 15: The modified Tacotron architecture. The blue blocks correspond to the
encoder and the orange ones to the decoder. This figure was extracted from (Shen
et al., 2017) and modified.

The target mel spectrograms for the synthesizer present more features than those
used for the speaker encoder. They are computed from a 50ms window with a 12.5ms
step and have 80 channels. The input texts are not processed for pronunciation in our
implementation, and the characters are fed as they are. There are a few cleaning proce-
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dures however: replacing abbreviations and numbers by their complete textual form,
forcing all characters to ASCII, normalizing whitespaces and making all characters
lowercase. Punctuation could be used, but isn’t present in our datasets.

3.4.2 Experiments

In SV2TTS, the authors consider two datasets for training both the synthesizer and the
vocoder. These are LibriSpeech-Clean which we have mentioned earlier and VCTK10

which is a corpus of only 109 native English speakers recorded with professional equip-
ment. The speech in VCTK is sampled at 48kHz and downsampled to 24kHz in their
experiments, which is still higher than the 16kHz sampling of LibriSpeech. They find
that a synthesizer trained on LibriSpeech generalizes better than on VCTK when it
comes to similarity, but at the cost of speech naturalness. They assess this by training
the synthesizer on one set, and testing it on the other. These results are in Table 3.
We decided to work with the dataset that would offer the best voice cloning similarity
on unseen speakers, and therefore picked LibriSpeech. We have also tried using the
newer LibriTTS (Zen et al., 2019) dataset created by the Tacotron team. This dataset
is a cleaner version of the whole LibriSpeech corpus with noisy speakers pruned out,
a higher sampling rate of 24kHz and the punctuation that LibriSpeech lacks. Unfor-
tunately, the synthesizer could not produce meaningful alignments on this dataset for
reasons we ignore. We kept the original LibriSpeech dataset instead.

Synthesizer Training Set Testing Set Naturalness Similarity

VCTK LibriSpeech 4.28± 0.05 1.82± 0.08
LibriSpeech VCTK 4.01± 0.06 2.77± 0.08

Table 3: Cross-dataset evaluation on naturalness and speaker similarity for unseen
speakers. This table is extracted from (Jia et al., 2018)

Following the preprocessing recommendations of the authors, we use an Auto-
matic Speech Recognition (ASR) model to force-align the LibriSpeech transcripts to
text. We found the Montreal Forced Aligner11 to perform well on this task. We’ve
also made a cleaner version of these alignments public12 to save some time for other
users in need of them. With the audio aligned to the text, we split utterances on
silences longer than 0.4 seconds. This helps the synthesizer to converge, both because
of the removal of silences in the target spectrogram, but also due to the reduction of
the median duration of the utterances in the dataset, as shorter sequences offer less
room for timing errors. We ensure that utterances are not shorter than 1.6 seconds,
the duration of partial utterances used for training the encoder, and not longer than
11.25 seconds so as to save GPU memory for training. We do not split on a silence

10https://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
11https://montreal-forced-aligner.readthedocs.io/en/latest/
12https://github.com/CorentinJ/librispeech-alignments
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that would create an utterance too short or too long if possible. The distribution of
the length of the utterances in the dataset is plotted in Figure 16. Note how long
silences already account for 64 hours (13.7%) of the dataset.

Figure 16: (left) Histogram of the duration of the utterances in LibriSpeech-Clean,
(middle) after splitting on silences, (right) after constraining the length and readjusting
the splits.

Isolating the silences with force-aligning the text to the utterances additionally
allows to create a profile of the noise for all utterances of the same speaker. We use
a python implementation13 of the LogMMSE algorithm (Ephraim and Malah, 1985).
LogMMSE cleans an audio speech segment by profiling the noise in the earliest few
frames (which will usually not contain speech yet) and updating this noise profile on
non-speech frames continuously throughout the utterance. We adapt this implemen-
tation to profile the noise and to clean the speech in two separate steps. On par with
the authors, we found this additional preprocessing step to greatly help reducing the
background noise of the synthesized spectrograms.

In SV2TTS, the embeddings used to condition the synthesizer at training time
are speaker embeddings. We argue that utterance embeddings of the same target
utterance make for a more natural choice instead. At inference time, utterance em-
beddings are also used. While the space of utterance and speaker embeddings is the
same, speaker embeddings are not L2-normalized. This difference in domain should
be small and have little impact on the synthesizer that uses the embedding, as the au-
thors agreed when we asked them about it. However, they do not mention how many
utterance embeddings are used to derive a speaker embedding. One would expect
that all utterances available should be used; but with a larger number of utterance
embeddings, the average vector (the speaker embedding) will further stray from its
normalized version. Furthermore, the authors mention themselves that there are of-
ten large variations of tone and pitch within the utterances of a same speaker in the
dataset, as they mimic different characters (Jia et al., 2018, Appendix B). Utterances
have lower intra-variation, as their scope is limited to a sentence at most. Therefore,
the embedding of an utterance is expected to be a more accurate representation of
the voice spoken in the utterance than the embedding of the speaker. This holds if

13https://github.com/wilsonchingg/logmmse
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the utterance is long enough than to produce a meaningful embedding. While the
“optimal” duration of reference speech was found to be 5 seconds, the embedding is
shown to be already meaningful with only 2 seconds of reference speech (see table 4).
We believe that with utterances no shorter than the duration of partial utterances
(1.6s), the utterance embedding should be sufficient for a meaningful capture of the
voice, hence we used utterance embeddings for training the synthesizer.

Reference utterance duration
1 sec 2 sec 3 sec 5 sec 10 sec

Naturalness (MOS) 4.28± 0.05 4.26± 0.05 4.18± 0.06 4.20± 0.06 4.16± 0.06
Similarity (MOS) 2.85± 0.07 3.17± 0.07 3.31± 0.07 3.28± 0.07 3.18± 0.07

SV-EER 17.28% 11.30% 10.80% 10.46% 11.50%

Table 4: Impact of duration of the reference speech utterance. Evaluated on VCTK.
This table is extracted from (Jia et al., 2018).

We train the synthesizer for 150k steps, with a batch size of 144 across 4 GPUs.
The number of decoder outputs per step is set to 2, as is done in Tacotron 1. We
found the model to either not converge or perform poorly with one output per decoder
step. The loss function is the L2 loss between the predicted and ground truth mel
spectrograms. During training, the model is set in Ground Truth Aligned (GTA) mode
(also called teacher-forcing mode), where the input to the pre-net is the previous frame
of the ground truth spectrogram instead of the predicted one. With GTA, the pitch
and prosody of the generated spectrogram is aligned with the ground truth, allowing
for a shared context between the prediction and the ground truth as well as faster
convergence. Without GTA, the synthesizer would generate different variations of the
same utterance given a fixed text and embedding input (as is the case at inference
time).

As was discussed in section 2.1 is also the case for the vocoder, it is difficult
to provide any quantitative assessment of the performance of the model. We can
observe that the model is producing correct outputs through informal listening tests,
but a formal evaluation would require us to setup subjective score polls to derive the
MOS. While some authors we referred to could do so, this is beyond our reach. In
the case of the synthesizer however, one can also verify that the alignments generated
by the attention module are correct. We plot an example in Figure 17. Notice the
number of decoder steps (223) matching the number of frames predicted (446) by the
number of decoder outputs per step (2). Notice also how the predicted spectrogram
is smoother than the ground truth, a typical behaviour of the model predicting the
mean in presence of noise.

Before training the vocoder, we can evaluate some aspects of the trained syn-
thesizer using Griffin-Lim (Griffin and Jae Lim, 1984) as vocoder. Griffin-Lim is not
a machine learning model but rather an iterative algorithm that estimates the source
audio signal of a spectrogram. Audio generated this way typically conserves few of the
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Figure 17: (left) Example of alignment between the encoder steps and the decoder
steps. (right) Comparison between the GTA predicted spectrogram and the ground
truth spectrogram.

voice characteristics of the speaker, but the speech is intelligible. The speech gener-
ated by the synthesizer matches correctly the text, even in the presence of complex or
fictitious words. The prosody is however sometimes unnatural, with pauses at unex-
pected locations in the sentence, or the lack of pauses where they are expected. This is
particularly noticeable with the embedding of some speakers who talk slowly, showing
that the speaker encoder does capture some form of prosody. The lack of punctuation
in LibriSpeech is partially responsible for this, forcing the model to infer punctuation
from the text alone. This issue was highlighted by the authors as well, and can be
heard on some of their samples14 of LibriSpeech speakers. The limits we imposed on
the duration of utterances in the dataset (1.6s - 11.25s) are likely also problematic.
Sentences that are too short will be stretched out with long pauses, and for those that
are too long the voice will be rushed. When generating several sentences at inference
time, we need to manually insert breaks to delimit where to split the input text so as
to synthesize the spectrogram in multiple parts. This has the advantage of creating a
batch of inputs rather than a long input, allowing for fast inference.

We can further observe how some voice features are lost with Griffin-Lim by
computing the embeddings of synthesized speech and projecting them with UMAP
along with ground truth embeddings. An example is given in Figure 18. We observe
that the synthesized embeddings clusters are close to their respective ground truth
embeddings cluster. The loss of emerging features is also visible, e.g for the pink,
red and the two blue speakers the synthesized utterances have a lower inter-cluster
variance than their ground truth counterpart. This phenomenon occurs with the gray
and purple speakers as well.

Tacotron usually operates faster than real-time. We measure an inference speed
of 5× to 10× real-time, by comparing the time of generation with the duration of the
generated spectrogram.

14https://google.github.io/tacotron/publications/speaker_adaptation/index.html
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Figure 18: Projections of ground truth embeddings and of Griffin-Lim synthesized
speech embeddings generated from the same ground truth embeddings. Ground truth
embeddings are drawn with circles and synthesized embeddings with crosses.

3.5 Vocoder

In SV2TTS and in Tacotron2, WaveNet is the vocoder. WaveNet has been at the
heart of deep learning with audio since its release and remains state of the art when
it comes to voice naturalness in TTS. It is however also known for being the slowest
practical deep learning architecture at inference time. Several later papers brought
improvements on that aspect to bring the generation near real-time or faster than
real-time, e.g. (van den Oord et al., 2017; Paine et al., 2016; Kalchbrenner et al.,
2018), with no or next to no hit to the quality of the generated speech. Nonetheless,
WaveNet remains the vocoder in SV2TTS as speed is not the main concern and because
Google’s own WaveNet implementation with various improvements already generates
at 8000 samples per second (Kalchbrenner et al., 2018, page 2). This is in contrast
with ”vanilla” WaveNet which generates at 172 steps per second at best (van den
Oord et al., 2017, page 7). At the time of the writing of this thesis, most open-source
implementations of WaveNet are still vanilla implementations.

(Kalchbrenner et al., 2018) proposes a simple scheme for describing the inference
speed of autoregressive models. Given a target vector u with |u| samples to predict,
the total time of inference T (u) can be decomposed as:

T (u) = |u|
N∑
i=1

(c(opi) + d(opi))
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where N is the number of matrix-vector products (∝ the number of layers) required to
produce one sample, c(opi) is the computation time of layer i and d(opi) is the overhead
of the computation (typically I/O operations) for layer i. Note that standard sampling
rates for speech include 16kHz, 22.05kHz and 24kHz (while music is usually sampled
at 44.1kHz), meaning that for just 5 seconds of audio |u| is close to 100,000 samples.
The standard WaveNet architecture accounts for three stacks of 10 residual blocks of
two layers each, leading to N = 60.

WaveRNN, the model proposed in (Kalchbrenner et al., 2018), improves on
WaveNet by not only reducing the contribution from N but also from u, c(opi) and
d(opi). The vocoder model we use is an open source PyTorch implementation15 that is
based on WaveRNN but presents quite a few different design choices made by github
user fatchord. We’ll refer to this architecture as the “alternative WaveRNN”.

3.5.1 Model architecture

In WaveRNN, the entire 60 convolutions from WaveNet are replaced by a single GRU
layer (Cho et al., 2014). The authors maintain that the high non-linearity of a GRU
layer alone is close enough to encompass the complexity of the entire WaveNet model.
Indeed, they report a MOS of 4.51 ± 0.08 for Wavenet and 4.48 ± 0.07 for their best
WaveRNN model. The inputs to the model are the GTA mel spectrogram generated
by the synthesizer, with the ground truth audio as target. At training time the model
predicts fixed-size waveform segments. The forward pass of WaveRNN is implemented
with only N = 5 matrix-vector products in a coarse-fine scheme where the lower 8 bits
(coarse) of the target 16 bits sample are predicted first and then used to condition
the prediction of the higher 8 bits (fine). The prediction is over the parameters of a
distribution from which the output is sampled. We refer the reader to (Kalchbrenner
et al., 2018) for additional details.

The authors improve on the factors c(opi) and d(opi) by implementing the sam-
pling operation as a custom GPU operation. We do not replicate this. They also
sparsify the network with the pruning strategy from (Narang et al., 2017; Zhu and
Gupta, 2017). This method gradually prunes weights during training, as opposed to
more classical pruning algorithms that operate between several trainings. The algo-
rithm creates a binary mask over the weights that indicates whether the weight should
be forced set to 0 or remain as is. The proportion of zero weights compared to the
total number of weights in the network is called sparsity. Results from (Narang et al.,
2017; Zhu and Gupta, 2017) indicate that large networks with sparsity levels between
90% and 95% significantly outperform their dense versions. The authors of WaveRNN
additionally argue that c(opi) is proportional to the number of nonzero weights. We
experiment with this form of pruning and report our results in section 3.5.2.

Finally, they improve on |u| with batched sampling. In batched sampling, the
utterance is divided in segments of fixed length and the generation is done in parallel

15https://github.com/fatchord/WaveRNN
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over all segments. To preserve some context between the end of a segment and the
beginning of the subsequent one, a small section of the end of a segment is repeated at
the beginning of the next one. This process is called folding. The model then forwards
the folded segments. To retrieve the unfolded tensor, the overlapping sections of
consecutive segments are merged by a cross-fade. This is illustrated in Figure 19. We
use batched sampling with the alternative WaveRNN, with a segment length of 8000
samples and an overlap length of 400 samples. With these parameters, a folded batch
of size 2 will yield a bit more than 1 second of audio for 16kHz speech.

Figure 19: Batched sampling of a tensor. Note how the overlap is repeated over each
next segment in the folded tensor.

The alternative WaveRNN is the architecture we use. There is no documentation
nor paper for this model, so we rely on the source code and on the diagram of the author
(Figure 20) to understand its inner workings. At each training step, a mel spectrogram
and its corresponding waveform are cut in the same number of segments. The inputs
to the model are the spectrogram segment t to predict and the waveform segment
t − 1. The model is expected to output the waveform segment t of identical length.
The mel spectrogram goes through an upsampling network to match the length of the
target waveform (the number of mel channels remains the same). A Resnet-like model
also uses the spectrogram as input to generate features that will condition the layers
throughout the transformation of the mel spectrogram to a waveform. The resulting
vector is repeated to match the length of the waveform segment. This conditioning
vector is then split equally four ways along the channel dimension, and the first part
is concatenated with the upsampled spectrogram and with the waveform segment of
the previous timestep. The resulting vector goes through several transformation with
skip connections: first two GRU layers then a dense layer. Between each step, the
conditioning vector is concatenated with the intermediate waveform. Finally, two
dense layers produce a distribution over discrete values that correspond to a 9-bit

28



encoding of mu-law companded audio.

Figure 20: The alternative WaveRNN architecture.

3.5.2 Experiments

When dealing with short utterances, the vocoder usually runs below real-time. The
inference speed is highly dependent of the number of folds in batched sampling. Indeed,
the network runs nearly in constant time with respect to the number of folds, with
only a small increase in time as the number of folds grows. We find it is simpler to
talk about a threshold duration of speech above which the model runs in real time.
On our setup, this threshold is of 12.5 seconds; meaning that for utterances that are
shorter than this threshold, the model will run slower than real-time. It seems that
performance varies unexpectedly with some environment factors (such as the operating
system) on PyTorch, and therefore we express our results with respect to a single same
configuration.

The implementation on our hands does not have the custom GPU operation by
(Kalchbrenner et al., 2018), and implementing it is beyond our capabilities. Rather,
we focus on the pruning aspect mentioned by the authors. They claim that a large
sparse WaveRNN will perform better and faster than a smaller dense one. We have ex-
perimented with the pruning algorithm but did not complete the training of a pruned
model, due to time limits. This is a milestone we hope to achieve at a later date.
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Sparse tensors are, at the time of writing, yet an experimental feature in PyTorch.
Their implementation might not be as efficient as the one the authors used. Through
experiments, we find that the matrix multiply operation addmm for a sparse matrix
and a dense vector only breaks even time-wise with the dense-only addmm for levels of
sparsity above 91%. Below this value, using sparse tensors will actually slow down the
forward pass speed. The authors report sparsity levels of 96.4% and 97.8% (Kalchbren-
ner et al., 2018, Table 5) while maintaining decent performances. Our tests indicate
that, at best, a sparsity level of 96.4% would lower the real-time threshold to 7.86 sec-
onds, and a level of 97.8% to 4.44 seconds. These are optimistic lower bounds on the
actual threshold due to our assumption of constant time inference, and also because
some layers in the model cannot be sparsified. This preliminary analysis indicates that
pruning the vocoder would be beneficial to inference speed.

Unfortunately we could not complete with successfully training a final version of
the vocoder before submitting this thesis. We did manage to get a prototype working
by February, but this model is no longer compatible with changes we’ve made to the
framework. We are determined to provide a working implementation before the defense
of this thesis, but we cannot report of new experiments for now. Our impressions of the
prototype was that our implementation was successful in creating a TTS model that
could clone most voices, but not some uncommon ones. Some artifacts and background
noise were present due to the poor quality of our synthesizer, which is why we had
to revise the quality of our data and our preprocessing procedures. One drawback of
the SV2TTS framework is the necessity to train models in sequential order. Once a
new encoder is trained, the synthesizer must be retrained and so must the vocoder.
Waiting for models to train so as to know on what to focus next has been a recurring
situation in the development of our framework. Nonetheless we believe that we will
be able to publish samples on our repository soon, and we invite the reader to follow
the developments to come even if they now fall beyond the submission date.

4 Toolbox and open-sourcing

A part of the development effort went into making this project suitable for open-source.
You can access the repository through this url: https://github.com/CorentinJ/

Real-Time-Voice-Cloning. If the repository is currently inaccessible at the time of
reading, it should be made open shortly.

Making the project open-source means to expose a clean interface to each model,
both for training and inference, as well as documenting code and procedures. We
believe that the effort is worth it. Our motivations are:

• to improve on our implementation with the contributions of users

• to learn about managing open-source repositories

• to assure the replicability of our results
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• to allow users to perform voice cloning on consumer hardware with little data,
time and effort.

For this last point, we aimed to develop a graphical interface allowing users to
get their hands on the framework quickly and without having to study it first. We call
it the “SV2TTS toolbox”. The interface of the toolbox can be seen in Figure 21. It is
written in Python with the Qt4 graphical interface, and is therefore cross-platform.

Figure 21: The SV2TTS toolbox interface. This image is best viewed on a digital
support.

A user begins by selecting an utterance audio file from any of the dataset stored
on their disk. The toolbox handles several popular speech datasets, and can be cus-
tomized to add new ones. Furthermore, the user can also record utterances so as to
clone his or her own voice.

Once an utterance is loaded, its embedding will be computed and the UMAP
projections will be updated automatically. The mel spectrogram of the utterance is
drawn (middle row on the right), but this is merely for reference, as it is not used to
compute anything. We also draw the embedding vector with a heatmap plot (on the
left of the spectrogram). Note that embeddings are unidimensional vectors and thus
the square shape has no structural meaning about the embedding values. Drawing
embeddings gives visual cues as to how two embeddings differ.

When an embedding has been computed, it can be used to generate a spec-
trogram. The user can write any arbitrary text (top right of the interface) to be
synthesized. As a reminder, punctuation is not supported by our model and will be
discarded. To tune the prosody of the generate utterance, the user has to insert line
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breaks between parts that should be synthesized individually. The complete spectro-
gram is then the concatenation of those parts. Synthesizing a spectrogram will display
it on the bottom right of the interface. Synthesizing the same sentences multiple times
will yield different outputs.

Finally, the user can generate the segment corresponding to the synthesized
spectrogram with the vocoder. A loading bar displays the progress of the generation.
When done, the embedding of the synthesized utterance is generated (on the left of
the synthesized spectrogram) and will also be projected with UMAP. The user is free
to take that embedding as reference for further generation.

5 Conclusion

We developed a framework for real-time voice cloning that had no public implemen-
tation. We find the results to be satisfying despite some unnatural prosody, and the
voice cloning ability of the framework to be reasonably good but not on par with meth-
ods that make use of more reference speech time. We hope to improve our framework
beyond the scope of this thesis, and possibly to implement some of the newer advances
in the field that were made at the time of writing. We believe that even more powerful
forms of voice cloning will become available in a near future.
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